Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Pediatr ; 23(1): 156, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2277530

ABSTRACT

BACKGROUND: The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), accountable for Coronavirus disease 2019 (COVID-19), may cause hyperglycemia and additional systemic complexity in metabolic parameters. It is unsure even if the virus itself causes type 1 or type 2 diabetes mellitus (T1DM or T2DM). Furthermore, it is still unclear whether even recuperating COVID-19 individuals have an increased chance to develop new-onset diabetes. METHODS: We wanted to determine the impact of COVID-19 on the levels of adipokines, pancreatic hormones, incretins and cytokines in acute COVID-19, convalescent COVID-19 and control children through an observational study. We performed a multiplex immune assay analysis and compared the plasma levels of adipocytokines, pancreatic hormones, incretins and cytokines of children presenting with acute COVID-19 infection and convalescent COVID-19. RESULTS: Acute COVID-19 children had significantly elevated levels of adipsin, leptin, insulin, C-peptide, glucagon and ghrelin in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had elevated levels of adipsin, leptin, insulin, C-peptide, glucagon, ghrelin and Glucagon-like peptide-1 (GLP-1) in comparison to control children. On the other hand, acute COVID-19 children had significantly decreased levels of adiponectin and Gastric Inhibitory Peptide (GIP) in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had decreased levels of adiponectin and GIP in comparison to control children. Acute COVID-19 children had significantly elevated levels of cytokines, (Interferon (IFN)) IFNγ, Interleukins (IL)-2, TNFα, IL-1α, IL-1ß, IFNα, IFNß, IL-6, IL-12, IL-17A and Granulocyte-Colony Stimulating Factors (G-CSF) in comparison to convalescent COVID-19 and controls. Convalescent COVID-19 children had elevated levels of IFNγ, IL-2, TNFα, IL-1α, IL-1ß, IFNα, IFNß, IL-6, IL-12, IL-17A and G-CSF in comparison to control children. Additionally, Principal component Analysis (PCA) analysis distinguishes acute COVID-19 from convalescent COVID-19 and controls. The adipokines exhibited a significant correlation with the levels of pro-inflammatory cytokines. CONCLUSION: Children with acute COVID-19 show significant glycometabolic impairment and exaggerated cytokine responses, which is different from convalescent COVID-19 infection and controls.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Child , Incretins/metabolism , Adipokines/metabolism , Leptin , Ghrelin , Tumor Necrosis Factor-alpha , Complement Factor D , Interleukin-17 , Pancreatic Hormones , Adiponectin , Glucagon , Interleukin-6 , C-Peptide , SARS-CoV-2 , Cytokines , Interleukin-12 , Granulocyte Colony-Stimulating Factor
2.
Tuberculosis (Edinb) ; 139: 102320, 2023 03.
Article in English | MEDLINE | ID: covidwho-2221438

ABSTRACT

BACKGROUND: Studies have reported the beneficial effects of Bacillus Calmette Guerin (BCG) vaccination, including non-specific cross-protection against other infectious diseases. METHODS: We investigated the impact of BCG vaccination on the frequencies of B cell subsets as well as total antibody levels in healthy elderly individuals at one month post vaccination. We also compared the above-mentioned parameters in post-vaccinated individuals to unvaccinated controls. RESULTS: Our results demonstrate that BCG vaccination induced enhanced frequencies of immature, classical and activated memory B cells and plasma cells and diminished frequencies of naïve and atypical memory B cells. BCG vaccination induced significantly increased levels of total IgG subclass isotypes compared to baseline. Similarly, all of the above parameters were significantly higher in vaccinated individuals compared to unvaccinated controls. CONCLUSION: BCG vaccination was associated with enhanced B cell subsets, suggesting its potential utility by enhancing heterologous immunity.


Subject(s)
BCG Vaccine , Mycobacterium tuberculosis , Humans , Aged , Vaccination/methods
3.
BMC Immunol ; 23(1): 51, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2089161

ABSTRACT

BACKGROUND: Plasmacytoid and myeloid dendritic cells play a vital role in the protection against viral infections. In COVID-19, there is an impairment of dendritic cell (DC) function and interferon secretion which has been correlated with disease severity. RESULTS: In this study, we described the frequency of DC subsets and the plasma levels of Type I (IFNα, IFNß) and Type III Interferons (IFNλ1), IFNλ2) and IFNλ3) in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the frequencies of pDC and mDC increase from Days 15-30 to Days 61-90 and plateau thereafter. Similarly, the levels of IFNα, IFNß, IFNλ1, IFNλ2 and IFNλ3 increase from Days 15-30 to Days 61-90 and plateau thereafter. COVID-19 patients with severe disease exhibit diminished frequencies of pDC and mDC and decreased levels of IFNα, IFNß, IFNλ1, IFNλ2 and IFNλ3. Finally, the percentages of DC subsets positively correlated with the levels of Type I and Type III IFNs. CONCLUSION: Thus, our study provides evidence of restoration of homeostatic levels in DC subset frequencies and circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals.


Subject(s)
COVID-19 , Interferon Type I , Humans , Interferon Type I/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Dendritic Cells/metabolism , Homeostasis
4.
J Travel Med ; 29(6)2022 09 17.
Article in English | MEDLINE | ID: covidwho-1997061

ABSTRACT

BACKGROUND: Covaxin/BBV152 is one of the most widely used vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and one of the few vaccines used extensively in low- and middle-income countries (LMIC). METHODS: We investigated the effect of Covaxin on the SARS-CoV-2 specific IgG and IgA and neutralizing antibody (NAb) levels at baseline (M0) and at Months 1 (M1), 2 (M2), 3 (M3), 4 (M4), 6 (M6) and 12 (M12) following vaccination in healthcare workers. In addition, we also examined the NAb levels against variant lineages of B.1.617.2 (Delta, India), B.1.617.2.1 (Delta Plus, India), B.1.351 (Beta, SA), B.1.1.7 (Alpha, UK) and B.1.1.529 (Omicron). RESULTS: Covaxin induces enhanced SARS-CoV-2 binding antibodies of IgG and IgA responses against both spike (S) and nucleocapsid (N) antigens at M1, M2, M3, M4, M6 and M12 in comparison with M0. Our data also reveal that NAb levels against the ancestral strain (Wuhan, wild type) are elevated and sustained at M1, M2, M3, M4, M6 and M12 in comparison with M0 and against variant lineages of B.1.617.2 (Delta, India), B.1.617.2.1 (Delta Plus, India), B.1.351 (Beta, SA) and B.1.1.7 (Alpha, UK) are elevated at M3, M6 and M12 in comparison with M0. However, NAb levels against B.1.1.529 (Omicron) was consistently below the limit of detection except at M12. CONCLUSION: Thus, Covaxin induces an enhanced humoral immune response, with persistence till at least 12 months post-vaccination against most SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccines, Inactivated
5.
J Infect Dis ; 226(7): 1215-1223, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-1985078

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) presents with inflammation and pathology of multiple organs in the pediatric population in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We characterized the SARS-CoV-2 antigen-specific cytokine and chemokine responses in children with MIS-C, coronavirus disease 2019 (COVID-19), and other infectious diseases. RESULTS: MIS-C is characterized by elevated levels of type 1 (interferon-γ, interleukin [IL] 2), type 2 (IL-4, IL-13), type 17 (IL-17), and other proinflammatory cytokines (IL-1α, IL-6, IL-12p70, IL-18, and granulocyte-macrophage colony-stimulating factor) in comparison to COVID-19 and other infectious diseases following stimulation with SARS-CoV-2-specific antigens. Similarly, upon SARS-CoV-2 antigen stimulation, CCL2, CCL3, and CXCL10 chemokines were significantly elevated in children with MIS-C in comparison to the other 2 groups. Principal component analysis based on these cytokines and chemokines could clearly distinguish MIS-C from both COVID-19 and other infections. In addition, these responses were significantly diminished and normalized 6-9 months after recovery. CONCLUSIONS: Our data suggest that MIS-C is characterized by an enhanced production of cytokines and chemokines that may be associated with disease pathogenesis.


Subject(s)
COVID-19 , Communicable Diseases , Antigens, Viral , COVID-19/complications , Chemokines , Child , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunity , Interferon-gamma , Interleukin-13 , Interleukin-17 , Interleukin-18 , Interleukin-4 , Interleukin-6 , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
6.
PLoS One ; 16(11): e0258743, 2021.
Article in English | MEDLINE | ID: covidwho-1511818

ABSTRACT

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60-80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.


Subject(s)
BCG Vaccine/immunology , Cytokines/immunology , Immunologic Memory/immunology , Interleukin Receptor Common gamma Subunit/immunology , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Female , Humans , Interleukins/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Vaccination/methods
7.
Front Immunol ; 12: 752397, 2021.
Article in English | MEDLINE | ID: covidwho-1497081

ABSTRACT

Covaxin/BBV152 is a whole virion inactivated SARS-CoV-2 vaccine. The effect of prime-boost vaccination with Covaxin on systemic immune responses is not known. We investigated the effect of Covaxin on the plasma levels of a wide panel of cytokines and chemokines at baseline (M0) and at months 1 (M1), 2 (M2) and 3 (M3) following prime-boost vaccination in healthy volunteers. Our results demonstrate that Covaxin induces enhanced plasma levels of Type 1 cytokines (IFNγ, IL-2, TNFα), Type 2/regulatory cytokines (IL-4, IL-5, IL-10 and IL-13), Type 17 cytokine (IL-17A), other pro-inflammatory cytokines (IL-6, IL-12, IL-1α, IL-1ß) and other cytokines (IL-3 and IL-7) but diminished plasma levels of IL-25, IL-33, GM-CSF and Type 1 IFNs. Covaxin also induced enhanced plasma levels of CC chemokine (CCL4) and CXC chemokines (CXCL1, CXCL2 and CX3CL1) but diminished levels of CXCL10. Covaxin vaccination induces enhanced cytokine and chemokine responses as early as month 1, following prime-boost vaccination, indicating robust activation of innate and adaptive immune responses in vaccine recipients.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/physiology , Vaccines, Inactivated/immunology , Adaptive Immunity , Adult , Chemokines/blood , Cytokines/blood , Female , Healthy Volunteers , Humans , Immunity, Innate , Immunization , Immunization, Secondary , Male , Middle Aged , Vaccination , Young Adult
8.
Sci Rep ; 11(1): 20254, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1467135

ABSTRACT

Monocytes are thought to play an important role in host defence and pathogenesis of COVID-19. However, a comprehensive examination of monocyte numbers and function has not been performed longitudinally in acute and convalescent COVID-19. We examined the absolute counts of monocytes, the frequency of monocyte subsets, the plasma levels of monocyte activation markers using flowcytometry and ELISA in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the absolute counts of total monocytes and the frequencies of intermediate and non-classical monocytes increases from Days 15-30 to Days 61-90 and plateau thereafter. In contrast, the frequency of classical monocytes decreases from Days 15-30 till Days 121-150. The plasma levels of sCD14, CRP, sCD163 and sTissue Factor (sTF)-all decrease from Days 15-30 till Days 151-180. COVID-19 patients with severe disease exhibit higher levels of monocyte counts and higher frequencies of classical monocytes and lower frequencies of intermediate and non-classical monocytes and elevated plasma levels of sCD14, CRP, sCD163 and sTF in comparison with mild disease. Thus, our study provides evidence of dynamic alterations in monocyte counts, subset frequencies and activation status in acute and convalescent COVID-19 individuals.


Subject(s)
COVID-19/immunology , Monocytes , Acute Disease , Adolescent , Adult , Aged , Biomarkers/blood , Convalescence , Female , Humans , Leukocyte Count , Male , Middle Aged , Monocytes/cytology , Monocytes/immunology , Young Adult
9.
Am J Trop Med Hyg ; 105(5): 1255-1260, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1441316

ABSTRACT

It is essential to examine the longevity of the defensive immune response engendered by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We examined the SARS-CoV-2-specific antibody responses and ex vivo memory B-cell subsets in seven groups of individuals with COVID-19 classified based on days since reverse-transcription polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data showed that the levels of IgG and neutralizing antibodies started increasing from days 15 to 30 to days 61 to 90, and plateaued thereafter. The frequencies of naive B cells and atypical memory B cells decreased from days 15 to 30 to days 61 to 90, and plateaued thereafter. In contrast, the frequencies of immature B cells, classical memory B cells, activated memory B cells, and plasma cells increased from days 15 to 30 to days 61 to 90, and plateaued thereafter. Patients with severe COVID-19 exhibited increased frequencies of naive cells, atypical memory B cells, and activated memory B cells, and lower frequencies of immature B cells, central memory B cells, and plasma cells when compared with patients with mild COVID-19. Therefore, our data suggest modifications in memory B-cell subset frequencies and persistence of humoral immunity in convalescent individuals with COVID-19.


Subject(s)
Antibodies, Viral/blood , B-Lymphocyte Subsets/immunology , COVID-19/immunology , Convalescence , Memory B Cells/immunology , Acute Disease , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Cross-Sectional Studies , Female , Humans , Immunity, Humoral , India , Male , Middle Aged , Young Adult
10.
Indian J Med Res ; 153(5&6): 671-676, 2021 05.
Article in English | MEDLINE | ID: covidwho-1412852

ABSTRACT

Background & objectives: Vaccination against SARS-CoV-2 is a recommendation from the World Health Organization as the foremost preference in the current situation to control the COVID-19 pandemic. BBV152 is one of the approved vaccines against SARS-CoV-2 in India. In this study, we determined SARS-CoV-2-specific antibody levels at day 0 (baseline, before vaccination), day 28 ± 2 post-first dose (month 1) and day 56 ± 2 post-first dose (month 2) of BBV152 whole-virion-inactivated SARS-CoV-2 recipients, and compared the antibody responses of individuals with confirmed pre-vaccination SARS-CoV-2 infection to those individuals without prior evidence of infection. Methods: Blood samples were collected from 114 healthcare professionals and frontline workers who received BBV152 vaccine from February to May & June 2021. Prior infection with SARS-CoV-2 was determined at baseline. Serum samples were used to estimate SARS-CoV-2 nucleoprotein-specific IgG [IgG (N)], spike protein-specific IgG [IgG (S)] and neutralizing antibodies (NAb). Results: Participants with previous SARS-CoV-2 infection after a single vaccine dose elicited IgG (N) and IgG (S) antibody levels along with NAb binding inhibition responses levels were similar to infection-naïve vaccinated participants who had taken two doses of vaccine. Interpretation & conclusions: Our preliminary data suggested that a single dose of BBV152-induced humoral immunity in previously infected individuals was equivalent to two doses of the vaccine in infection-naïve individuals. However, these findings need to be confirmed with large sized cohort studies.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Humans , Pandemics , Pilot Projects , SARS-CoV-2
11.
J Infect ; 83(3): 339-346, 2021 09.
Article in English | MEDLINE | ID: covidwho-1386050

ABSTRACT

OBJECTIVES: Latent Tuberculosis infection (LTBI) is postulated to modulate immune responses and alter disease severity in SARS-CoV-2 co-infection. However, no data exist on the effect of LTBI on the immune responses in SARS-CoV-2 co-infected individuals. METHODS: We examined the SARS-CoV-2 specific antibody responses, plasma cytokines, chemokines, acute phase proteins and growth factor levels in LTBI positive and negative individuals with SARS-CoV-2 infection. RESULTS: Our results demonstrated that individuals with LTBI (LTBI+) and seropositive for SARS-CoV-2 infection were associated with elevated SARS-CoV-2 specific IgM, IgG and IgA antibodies, as well as enhanced neutralization activity compared to those negative for LTBI (LTBI-) individuals. Our results also demonstrate that LTBI+ individuals exhibited significantly higher plasma levels of IFNγ, IL-2, TNFα, IL-1α, IL-1ß, IL-6, IL-12, IL-15, IL-17, IL-3, GM-CSF, IL-10, IL-25, IL-33, CCL3 and CXCL10 compared to LTBI- individuals. Finally, our results show that LTBI+ individuals exhibit significantly higher levels of C-reactive protein, alpha-2 macroglobulin, VEGF and TGFα compared to LTBI- individuals. CONCLUSIONS: Thus, our data clearly demonstrates that LTBI+ individuals seropositive for SARS-CoV-2 infection exhibit heightened levels of humoral, cytokine and acute phase responses compared to LTBI- individuals. Thus, LTBI is associated with modulation of antibody and cytokine responses as well as systemic inflammation in individuals seropositive for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coinfection , Latent Tuberculosis , Acute-Phase Reaction , Cytokines , Humans , Latent Tuberculosis/complications , SARS-CoV-2
13.
Open Forum Infect Dis ; 8(7): ofab279, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1331565

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a rare manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children that can result in increased morbidity and mortality. The inflammatory underpinnings of MIS-C have not been examined in detail. METHODS: We examined the plasma levels of acute phase proteins and microbial translocation markers in children with MIS-C, children with acute coronavirus disease 2019 (COVID-19) infection, SARS-CoV-2-seropositive children, and controls. RESULTS: MIS-C children exhibited significantly higher levels of C-reactive protein (CRP), alpha2 macroglobulin (α2M), serum amyloid P (SAP), lipopolysaccharide (LPS), sCD14, and LPS binding protein (LBP) and significantly lower levels of haptoglobin (Hp) in comparison with seropositive, control, and/or COVID-19 children. In addition, COVID-19 children exhibited significantly higher levels of most of the above markers in comparison with seropositive and control children. Principal component analysis using a set of these markers could clearly discriminate MIS-C and COVID-19 from seropositive and control children. MIS-C children requiring pediatric intensive care unit admission and COVID-19 children with severe disease had higher levels of CRP, SAP, and/or sCD14 at admission. CONCLUSIONS: Our study describes the role of systemic inflammation and microbial translocation markers in children with MIS-C and COVID-19 and therefore helps in advancing our understanding of the pathogenesis of different presentations of SARS-CoV-2 infection in children.

14.
Int J Infect Dis ; 110: 98-104, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1322128

ABSTRACT

OBJECTIVE: BCG can improve the response to vaccines directed against viral infections, and also, BCG vaccination reduces all-cause mortality, most likely by protecting against unrelated infections. However, the effect of BCG vaccination on dendritic cell (DC) subsets is not well characterized. METHODS: We investigated the impact of BCG vaccination on the frequencies of DC subsets and type I and III interferons (IFNs) using whole blood and plasma samples in a group of elderly individuals (age 60-80 years) at one-month post-vaccination as part of our clinical study to examine the effect of BCG on COVID-19. RESULTS: Our results demonstrate that BCG vaccination induced enhanced frequencies of plasmacytoid DC (pDC) and myeloid DC (mDC). BCG vaccination also induced diminished plasma levels of type I IFNs, IFNα and IFNß but increased levels of type III IFNs, IL-28A and IL-29. CONCLUSIONS: Thus, BCG vaccination was associated with enhanced DC subsets and IL-28A/IL-29 in elderly individuals, suggesting its ability to induce non-specific innate immune responses.


Subject(s)
BCG Vaccine , COVID-19 , Aged , Aged, 80 and over , Dendritic Cells , Humans , Interferon-alpha , Interferons , Middle Aged , SARS-CoV-2 , Vaccination , Interferon Lambda
15.
EBioMedicine ; 66: 103317, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163669

ABSTRACT

BACKGROUND: SARS-CoV-2 infection in children can present with varied clinical phenotypes and understanding the pathogenesis is essential, to inform about the clinical trajectory and management. METHODS: We performed a multiplex immune assay analysis and compared the plasma biomarkers of Paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 infection (PIMS-TS), acute COVID-19 infection (COVID-19), SARS-CoV-2 seropositive and control children admitted to a tertiary care children's hospital in Chennai, India. Pro-inflammatory cytokines, chemokines and growth factors were correlated with SARS-CoV-2 clinical phenotypes. FINDINGS: PIMS-TS children had significantly elevated levels of cytokines, IFNγ, IL-2, TNFα, IL-1α, IFNα, IFNß, IL-6, IL-15, IL-17A, GM-CSF, IL-10, IL-33 and IL-Ra; elevated chemokines, CCL2, CCL19, CCL20 and CXCL10 and elevated VEGF, Granzyme B and PDL-1 in comparison to COVID-19, seropositive and controls. COVID-19 children had elevated levels of IFNγ, IL-2, TNFα, IL-1α, IFNα, IFNß, IL-6, IL-17A, IL-10, CCL2, CCL5, CCL11, CXCL10 and VEGF in comparison to seropositive and/or controls. Similarly, seropositive children had elevated levels of IFNγ, IL-2, IL-1α, IFNß, IL-17A, IL-10, CCL5 and CXCL10 in comparison to control children. Plasma biomarkers in PIMS-TS and COVID-19 children showed a positive correlation with CRP and a negative correlation with the lymphocyte count and sodium levels. INTERPRETATION: We describe a comprehensive plasma biomarker profile of children with different clinical spectrum of SARS-CoV-2 infection from a low- and middle-income country (LMIC) and observed that PIMS-TS is a distinct and unique immunopathogenic paediatric illness related to SARS-CoV-2 presenting with cytokine storm different from acute COVID-19 infection and other hyperinflammatory conditions.


Subject(s)
Biomarkers/blood , COVID-19/blood , Systemic Inflammatory Response Syndrome/blood , Adolescent , C-Reactive Protein/analysis , COVID-19/etiology , COVID-19/virology , COVID-19 Serological Testing , Case-Control Studies , Chemokines/blood , Child , Child, Preschool , Cytokines/blood , Female , Humans , India , Infant , Intercellular Signaling Peptides and Proteins/blood , Lymphocyte Count , Male , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL